Synchronized是通过对象内部的一个叫做监视器锁(monitor)来实现的。但是监视器锁本质又是依赖于底层的操作系统的Mutex Lock来实现的。而操作系统实现线程之间的切换这就需要从用户态转换到核心态,这个成本比较高,状态之间的转换需要相对比较长的时间,这就是为什么Synchronized效率低的原因。因此,这种依赖于操作系统Mutex Lock所实现的锁我们称之为重量级锁。JDK中对Synchronized做的种种优化,其核心都是为了减少这种重量级锁的使用。JDK1.6以后,为了减少获得锁和释放锁所带来的性能消耗,提高性能,引入了一系列的锁优化措施。本篇将最浙西优化措施进行介绍。
如果对Synchronized底层原理不清楚的可以参考Synchronize实现原理,对于Mutex Lock不太清楚的可以参考Mutex lock for Linux Thread Synchronization,同时这篇浅谈Mutex (Lock)文章详细介绍了mutex时间消耗。
优化主要分为俩大类,一类是编译优化,一类是运行时优化。
编译优化
编译优化主要从编译的角度来对锁进行优化,方式有俩种锁消除和锁优化
锁消除
锁消除即删除不必要的加锁操作。根据代码逃逸技术,如果判断到一段代码中,堆上的数据不会逃逸出当前线程,那么可以认为这段代码是线程安全的,不必要加锁。看下面这段程序:
1 | package com.paddx.test.concurrent; |
虽然StringBuffer的append是一个同步方法,但是这段程序中的StringBuffer属于一个局部变量,并且不会从该方法中逃逸出去,所以其实这过程是线程安全的,可以将锁消除。
锁粗化
锁粗化(Lock Coarsening:原则上,我们在编写代码的时候,总是推介将同步快的作用范围限制在尽量小的范围内。这样是为了使得需要同步操作数量尽可能变小,如果存在锁竞争,那等待锁的线程也能尽可能快的拿到锁。原则上这是对的,但是如果一系列连续操作都对同一个对象反复加锁和解锁,设置加锁出现在循环体中的,即使没有线程竞争,频繁地进行互斥同步操作也会导致不必要的性能损耗,因此采取锁粗化。
简单的说,就是将多次连接在一起的加锁、解锁操作合并为一次,将多个连续的锁扩展成一个范围更大的锁。举个例子:
1 | package com.paddx.test.string; |
这里每次调用stringBuffer.append方法都需要加锁和解锁,如果虚拟机检测到有一系列连串的对同一个对象加锁和解锁操作,就会将其合并成一次范围更大的加锁和解锁操作,即在第一次append方法时进行加锁,最后一次append方法结束后进行解锁。
运行时优化
锁优化的过程总体上可以看成有以下几步,优先使用前面一步的锁,当达到一定条件就会上升到下一级,相对来说下一级的加锁会消耗更多的时间。
- 自旋锁:简单理解是自旋等待其它线程锁释放,从而减少线程上下文的切换。
- 偏向锁:锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁一直没有被其他的线程获取,则持有偏向锁的线程将永远不需要再进行同步。
- 轻量级锁:轻量级锁并不是用来代替重量级锁的,它设计的初衷是在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。
- 重量级锁:
随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁,但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降)。
synchronized用的锁存在Java对象头里的,对象相关的信息可以参考JVM对象探秘。
自旋锁和自适应自旋
线程的阻塞和唤醒需要CPU从用户态转为核心态,频繁的阻塞和唤醒对CPU来说是一件负担很重的工作,势必会给系统的并发性能带来很大的压力。同时我们发现在许多应用上面,对象锁的锁状态只会持续很短一段时间,为了这一段很短的时间频繁地阻塞和唤醒线程是非常不值得的。所以引入自旋锁。
所谓自旋锁,就是让该线程等待一段时间,不会被立即挂起,看持有锁的线程是否会很快释放锁。怎么等待呢?执行一段无意义的循环即可(自旋)。自旋等待不能替代阻塞,先不说对处理器数量的要求(多核,貌似现在没有单核的处理器了),虽然它可以避免线程切换带来的开销,但是它占用了处理器的时间。如果持有锁的线程很快就释放了锁,那么自旋的效率就非常好,反之,自旋的线程就会白白消耗掉处理的资源,它不会做任何有意义的工作,典型的占着茅坑不拉屎,这样反而会带来性能上的浪费。所以说,自旋等待的时间(自旋的次数)必须要有一个限度,如果自旋超过了定义的时间仍然没有获取到锁,则应该被挂起。
自旋锁在JDK1.4中引入,默认关闭,但是可以使用-XX:+UseSpinning
开开启,在JDK1.6中默认开启。同时自旋的默认次数为10次,可以通过参数-XX:PreBlockSpin
来调整;如果通过参数-XX:preBlockSpin
来调整自旋锁的自旋次数,会带来诸多不便。假如我将参数调整为10,但是系统很多线程都是等你刚刚退出的时候就释放了锁(假如你多自旋一两次就可以获取锁),你是不是很尴尬。于是JDK1.6引入自适应的自旋锁,让虚拟机会变得越来越聪明。所谓自适应就意味着自旋的次数不再是固定的,它是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。它怎么做呢?线程如果自旋成功了,那么下次自旋的次数会更加多,因为虚拟机认为既然上次成功了,那么此次自旋也很有可能会再次成功,那么它就会允许自旋等待持续的次数更多。反之,如果对于某个锁,很少有自旋能够成功的,那么在以后要或者这个锁的时候自旋的次数会减少甚至省略掉自旋过程,以免浪费处理器资源。有了自适应自旋锁,随着程序运行和性能监控信息的不断完善,虚拟机对程序锁的状况预测会越来越准确,虚拟机会变得越来越聪明。
轻量级锁
“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的。但是,首先需要强调一点的是,轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量级锁使用产生的性能消耗。轻量级锁是在无竞争的情况下使用CAS操作去消除重量级锁使用的互斥量,从而提高性能。
在解释轻量级锁的执行过程之前,先明白一点,轻量级锁所适应的场景是线程交替执行同步块的情况,也就是虽然存在竞争,单不存在同时竞争的情形,如果存在同一时间访问同一锁的情况,就会导致轻量级锁膨胀为重量级锁。
既然是锁,就分为加锁和释放来个阶段。
加锁过程:
- 在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为
Displaced Mark Word
。这时候线程堆栈与对象头的状态如图所示。 - 拷贝对象头中的Mark Word复制到锁记录中。
- 拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤4,否则执行步骤5。
- 如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如图所示。
- 如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。
解锁过程:
- 通过CAS操作尝试把线程中复制的Displaced Mark Word对象替换当前的Mark Word。
- 如果替换成功,整个同步过程就完成了。
- 如果替换失败,说明有其他线程尝试过获取该锁(此时锁已膨胀),那就要在释放锁的同时,唤醒被挂起的线程。
轻量级锁能提升程序同步性能的依据是“对于绝大部分的锁,在整个同步周期内都是不存在竞争的”这一经验法则。如果没有竞争,轻量级锁便通过CAS操作成功避免了使用互斥量的开销;但如果确 实存在锁竞争,除了互斥量的本身开销外,还额外发生了CAS操作的开销。因此在有竞争的情况下, 轻量级锁反而会比传统的重量级锁更慢。
偏向锁
偏向锁也是JDK6中引入的一项锁优化措施,它的目的是消除数据在无竞争情况下的同步原语, 进一步提高程序的运行性能。如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互 斥量,那偏向锁就是在无竞争的情况下把整个同步都消除掉,连CAS操作都不去做了。
偏向锁中的“偏”,就是偏心的“偏”、偏袒的“偏”。它的意思是这个锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁一直没有被其他的线程获取,则持有偏向锁的线程将永远不需 要再进行同步。
如果读者理解了前面轻量级锁中关于对象头Mark Word与线程之间的操作过程,那偏向锁的原理就会很容易理解。假设当前虚拟机启用了偏向锁(启用参数-XX:+UseBiased Locking
,这是自JDK 6 起HotSpot虚拟机的默认值),那么当锁对象第一次被线程获取的时候,虚拟机将会把对象头中的标志 位设置为“01”、把偏向模式设置为“1”,表示进入偏向模式。同时使用CAS操作把获取到这个锁的线程的ID记录在对象的Mark Word之中。如果CAS操作成功,持有偏向锁的线程以后每次进入这个锁相关 的同步块时,虚拟机都可以不再进行任何同步操作(例如加锁、解锁及对Mark Word的更新操作等)。
下面是整理偏向锁获取和释放的过程
偏向锁获取过程:
- 访问Mark Word中偏向锁的标识是否设置成1,锁标志位是否为01——确认为可偏向状态。
- 如果为可偏向状态,则测试线程ID(对象头中的字段)是否指向当前线程,如果是,进入步骤(5),否则进入步骤(3)。
- 如果线程ID并未指向当前线程,则通过CAS操作竞设置对象头信息。如果竞争成功,则将Mark Word中线程ID设置为当前线程ID,然后执行(5);如果设置失败,执行(4)。
- 如果CAS获取偏向锁失败,则表示有竞争。当到达全局安全点(safepoint)时获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码。
- 执行同步代码。
偏向锁的释放:
偏向锁的撤销在上述第四步骤中有提到,偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动去释放偏向锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有字节码正在执行),它会首先暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态,撤销偏向锁后恢复到未锁定(标志位为“01”)或轻量级锁(标志位为“00”)的状态。
重量级锁、轻量级锁和偏向锁之间转换
补充一点的是:当对象进入偏向状态的时候,Mark Word大部分的空间(23个比特)都用于存储持有锁的线程ID了,这部分空间占用了原有存储对象哈希码的位置,那原来对象的哈希码怎么办呢? 在Java语言里面一个对象如果计算过哈希码,就应该一直保持该值不变(强烈推荐但不强制,因为用户可以重载hashCode()方法按自己的意愿返回哈希码),否则很多依赖对象哈希码的API都可能存 在出错风险。而作为绝大多数对象哈希码来源的Object::hashCode()方法,返回的是对象的一致性哈希码(Identity Hash Code),这个值是能强制保证不变的,它通过在对象头中存储计算结果来保证第一次计算之后,再次调用该方法取到的哈希码值永远不会再发生改变。因此,当一个对象已经计算过一 致性哈希码后,它就再也无法进入偏向锁状态了;而当一个对象当前正处于偏向锁状态,又收到需要计算其一致性哈希码请求时,它的偏向状态会被立即撤销,并且锁会膨胀为重量级锁。
在重量级锁的实现中,对象头指向了重量级锁的位置,代表重量级锁的ObjectMonitor类里有字段可以记录非加锁 状态(标志位为“01”)下的Mark Word,其中自然可以存储原来的哈希码。 偏向锁可以提高带有同步但无竞争的程序性能,但它同样是一个带有效益权衡(Trade Off)性质 的优化,也就是说它并非总是对程序运行有利。如果程序中大多数的锁都总是被多个不同的线程访 问,那偏向模式就是多余的。在具体问题具体分析的前提下,有时候使用参数-XX:- UseBiasedLocking来禁止偏向锁优化反而可以提升性能。
这里整理下hashcode在加锁情形下所有获取情况,java中hashcode的生成的具体实现,可以参考Java中hashCode的实现
具体的原理我是根据这篇JVM中的java对象头文章推导出来的,这里所说的hashcode是指没有自定义获取hashcode的情形。
- 无所情形,第一次调用hashcode,则会将生成的hashcode放置在对象头中,以后获取直接从对象头里面获取。
- 轻量级锁,则通过对象头中Lock record找到Displaced Mark Word的地址,从中获取。
- 重量级锁,则直接通过monitor对象来获取,但是根据重量级锁生成的时机不通,这里又分为俩种
- 如果是直接生成的重量级锁,也就是没有经过轻量级锁这一步,则直接可以拿到hashcode
- 如果是从轻量级锁升级到重量级锁,因为hashcode存储在Displaced Mark Word中,因此需要通过一个帮助函数去Displaced Mark Word中拿取