0%

TCP连接管理

tcp是面向连接的,在通信前会进行三次握手,在断开连接时会进行四次挥手。本篇文章会对连接的具体过程进行详细介绍,同时也会深入挖掘一些与连接相关的问题进行说明。

三次握手

第一次握手:客户端发送syn包(seq=x)到服务器,并进入SYN_SEND状态,等待服务器确认;

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(seq=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。

注意:tcp是全双工通信,客户端和服务器端都可以发送和接收数据,所以发送端和接收端都各自有一个序列号,也就是上面的x和y值

握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。理想状态下,TCP连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP 连接都将被一直保持下去。

三次握手

四次挥手

数据传输完毕后,双方都可释放连接。最开始的时候,客户端和服务器都是处于ESTABLISHED状态,假设客户端主动关闭,服务器被动关闭。

四次挥手

第一次挥手:客户端发送一个FIN,用来关闭客户端到服务器的数据传送,也就是客户端告诉服务器:我已经不会再给你发数据了(当然,在FIN包之前发送出去的数据,如果没有收到对应的ack确认报文,客户端依然会重发这些数据),但是,此时客户端还可以接受数据,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

第二次挥手:服务器收到FIN包后,发送一个ACK给对方并且带上自己的序列号seq,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号)。此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接收服务器发送的最后的数据)。

第三次挥手:服务器发送一个FIN,用来关闭服务器到客户端的数据传送,也就是告诉客户端,我的数据也发送完了,不会再给你发数据了。由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

第四次挥手:主动关闭方收到FIN后,发送一个ACK给被动关闭方,确认序号为收到序号+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCP后,才进入CLOSED状态。

服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

至此,完成四次挥手。

三次挥手

在四次挥手关闭TCP连接的时候,有时会省略第二条ACK消息,只存在第一条FIN消息、第三条FIN+ACK消息以及第四条FIN消息,从上图四次挥手的过程中可以看到其实第二条消息的ACK Number和第三条消息的ACK Number是相同的,省略第二条的时候其实是第三条消息捎带了第二条消息的ACK。

为什么客户端最后还要等待2MSL

MSL(Maximum Segment Lifetime):最长报文段寿命,TCP允许不同的实现可以设置不同的MSL值。

第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。

第二,假如A发送的第一个请求连接报文段丢失而未收到确认,A就会重传一次连接请求,后来B收到了确认,建立了连接。数据传输完毕后,就释放了连接。A共发送了两个连接请求报文段,其中第一个丢失,第二个到达了B。假如现在A发送的第一个连接请求报文段没有丢失,而是在某些网络节点长时间都留了,以至于延误到连接释放后的某个时间才到达B,这本来是已失效的报文段,但B并不知道,就会又建立一次连接。而等待的这2MSL就是为了解决这个问题的,A在发送完最后一个确认报后,在经过时间2MSL,就可以使本链接持续时间内所产生的所有报文段都从网络中消失,这样就可以使下一个新的连接中不会出现这种旧的连接请求报文段。

为什么tcp需要三次握手和四次挥手

为什么会采用三次握手,若采用二次握手可以吗? 四次呢?

tcp是面向连接的协议,通信前需要知道彼此都准备好,三次连接刚好能够使通信双方都知道彼此已经准备好。

如果是四次,也可以做到让通信双方都知道彼此已经准备好了,但是会增加一次通信成本。另外通信中著名的蓝军红军约定,这个例子说明,通信不可能100%可靠, 而上面的三次握手已经做好了通信的准备工作,再增加握手,并不能显著提高可靠性, 而且也没有必要。

首先看下这样一个场景,假设主机A为客户端,主机B为服务器端。主机A发出的连接请求没有收到主机B的确认,于是经过一段时间后,主机A又重新向主机B发送连接请求,且建立成功,完成数据传输并结束。但是主机A第一次发送的连接请求并没有丢失,而是因为网络节点导致延迟达到主机B,主机B以为是主机A又发起的新连接,于是主机B同意连接,并向主机A发回确认,但是此时主机A根本不会理会,主机B就一直在等待主机A发送数据,导致主机B的资源浪费。采用三次握手是为了防止失效的连接请求报文段突然又传送到主机B,因而产生错误。而在三次握手中, client和server都有一个发syn和收ack的过程, 双方都是发后能收, 表明通信则准备工作OK.

为什么建立连接是三次握手,关闭连接确是四次挥手呢?

建立连接的时候,服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端,从而减少了一次连接。
而关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。当然上面也有说明,如果恰好接到客户端接收请求时,服务端也想关闭请求,则可以合并为一次,这时就变成了三次挥手。

连接和释放过程中各状态介绍

3次握手过程状态

  1. LISTEN: 这个也是非常容易理解的一个状态,表示服务器端的某个SOCKET处于监听状态,可以接受连接了。
  2. SYN_SENT: 当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,因此也随即它会进入到了SYN_SENT状态,并等待服务端的发送三次握手中的第2个报文。SYN_SENT状态表示客户端已发送SYN报文。(发送端)
  3. SYN_RCVD: 这个状态与SYN_SENT遥相呼应这个状态表示接受到了SYN报文,在正常情况下,这个状态是服务器端的SOCKET在建立TCP连接时的三次握手会话过程中的一个中间状态,很短暂,基本上用netstat你是很难看到这种状态的,除非你特意写了一个客户端测试程序,故意将三次TCP握手过程中最后一个ACK报文不予发送。因此这种状态时,当收到客户端的ACK报文后,它会进入到ESTABLISHED状态。(服务器端)
  4. ESTABLISHED:这个容易理解了,表示连接已经建立了。(双方都已经进入)

4次挥手过程状态:(可参考下图)

四次挥手

  1. FIN_WAIT_1: 这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。(主动方)
    FIN_WAIT_2:上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你(ACK信息),稍后再关闭连接。(主动方)
  2. TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。(主动方)
  3. CLOSING(比较少见): 这种状态比较特殊,实际情况中应该是很少见,属于一种比较罕见的例外状态。正常情况下,当你发送FIN报文后,按理来说是应该先收到(或同时收到)对方的ACK报文,再收到对方的FIN报文。但是CLOSING状态表示你发送FIN报文后,并没有收到对方的ACK报文,反而却也收到了对方的FIN报文。什么情况下会出现此种情况呢?其实细想一下,也不难得出结论:那就是如果双方几乎在同时close一个SOCKET的话,那么就出现了双方同时发送FIN报文的情况,也即会出现CLOSING状态,表示双方都正在关闭SOCKET连接。
  4. CLOSE_WAIT: 这种状态的含义其实是表示在等待关闭。怎么理解呢?当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以 close这个SOCKET,发送FIN报文给对方,也即关闭连接。所以你在CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。(被动方)
  5. LAST_ACK: 这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。(被动方)
  6. CLOSED: 表示连接中断。

TCP的具体状态图可参考:

补充

序列号随机值

三次握手的一个重要功能是客户端和服务端交换ISN(Initial Sequence Number), 以便让对方知道接下来接收数据的时候如何按序列号组装数据。如果ISN是固定的,攻击者比较容易猜出后续的确认号。因此采用类似于下面的一个公式来计算序列号。

1
ISN = M + F(localhost, localport, remotehost, remoteport)

M是一个计时器,每隔4微秒加1。 F是一个Hash算法,根据源IP、目的IP、源端口、目的端口生成一个随机数值。要保证hash算法不能被外部轻易推算得出。

序列号回绕

因为ISN是随机的,所以序列号容易超过2^31-1。而tcp对于丢包和乱序等问题的判断都是依赖于序列号大小比较的。此时就出现了所谓的tcp序列号回绕(sequence wraparound)问题。怎么解决?

对于tcp seq场景来说,使用前后求差值来解决此问题。以无符号单字节为例:seq1=255(FFH),seq2=5(5H),从seq1到seq2,此时序列号发生了回绕现象。
那么seq2-seq1得到答案为6。因为无符号嘛,从255跳到0后,溢出位超出8位,然后被扔掉了,所以得到的是6。

连接队列

只有准备好的请求操作系统才会告诉上层的服务程序,因此为了维护这些还未准备好的请求或者准备好了但是未被上层应用调用的请求,操作系统维护了半连接队列和全连接队列。半连接队列维护的是处于SYN_RCVD状态的请求。全连接队列维护的是已经处于ESTABLISHED状态但仍未被应用程序accept的请求。具体如下图

接队列

1
2
# 查看是否有连接溢出
netstat -s | grep LISTEN

由于资源有限,队列就不可能无限扩大,因此就会有超出队列最大长度的时候。会出现以下俩种情况

半连接队列满了
在三次握手协议中,服务器维护一个半连接队列,该队列为每个客户端的SYN包开设一个条目(服务端在接收到SYN包的时候,就已经创建了request_sock结构,存储在半连接队列中),该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包。这些条目所标识的连接在服务器处于SYN_RECV状态,当服务器收到客户的确认包时,删除该条目,服务器进入ESTABLISHED状态。

目前,Linux下默认会进行5次重发SYN-ACK包,重试的间隔时间从1s开始,下次的重试间隔时间是前一次的双倍,5次的重试时间间隔为1s, 2s, 4s, 8s, 16s, 总共31s, 称为指数退避,第5次发出后还要等32s才知道第5次也超时了,所以总共需要 1s + 2s + 4s+ 8s+ 16s + 32s = 63s, TCP才会把断开这个连接。由于,SYN超时需要63秒,那么就给攻击者一个攻击服务器的机会,攻击者在短时间内发送大量的SYN包给Server(俗称SYN flood攻击),用于耗尽Server的SYN队列。对于应对SYN过多的问题,linux提供了几个TCP参数来调整应对。

半连接对联参数

全连接队列满
当第三次握手时,当server接收到ACK包之后,会进入一个新的叫 accept 的队列。当accept队列满了之后,即使client继续向server发送ACK的包,也会不被响应,此时ListenOverflows+1,同时server通过tcp_abort_on_overflow来决定如何返回,0表示直接丢弃该ACK,1表示发送RST通知client;相应的,client则会分别返回read timeout 或者 connection reset by peer

另外,tcp_abort_on_overflow是0的话,此时对应的请求有可能维护在半连接队列中,server过一段时间再次发送syn+ack给client(也就是重新走握手的第二步),如果client超时等待比较短,就很容易异常。而客户端收到多个SYN ACK 包,则会认为之前的ACK丢包了。于是促使客户端再次发送ACK ,在 accept队列有空闲的时候最终完成连接。若accept队列始终满员,则最终客户端收到RST包(此时服务端发送syn+ack的次数超出了tcp_synack_retries)。

服务端仅仅只是创建一个定时器,以固定间隔重传syn和ack到服务端

tcp全连接参数

syn flood攻击

最基本的DoS攻击就是利用合理的服务请求来占用过多的服务资源,从而使合法用户无法得到服务的响应。syn flood属于Dos攻击的一种。

如果恶意的向某个服务器端口发送大量的SYN包,则可以使服务器打开大量的半开连接,分配TCB(Transmission Control Block), 从而消耗大量的服务器资源,同时也使得正常的连接请求无法被相应。当开放了一个TCP端口后,该端口就处于Listening状态,不停地监视发到该端口的SYN报文,一旦接收到Client发来的Syn报文,就需要为该请求分配一个TCB,通常一个TCB至少需要280个字节,在某些操作系统中TCB甚至需要1300个字节,并返回一个SYN ACK命令,立即转为SYN-RECEIVED即半开连接状态,系统会为此耗尽资源。

常见的防攻击方法有

  1. 无效连接的监视释放
    监视系统的半开连接和不活动连接,当达到一定阈值时拆除这些连接,从而释放系统资源。这种方法对于所有的连接一视同仁,而且由于SYN Flood造成的半开连接数量很大,正常连接请求也被淹没在其中被这种方式误释放掉,因此这种方法属于入门级的SYN Flood方法。

  2. 延缓TCB分配方法
    消耗服务器资源主要是因为当SYN数据报文一到达,系统立即分配TCB,从而占用了资源。而SYN Flood由于很难建立起正常连接,因此,当正常连接建立起来后再分配TCB则可以有效地减轻服务器资源的消耗。常见的方法是使用Syn Cache和Syn Cookie技术。

    • Syn Cache技术
      系统在收到一个SYN报文时,在一个专用HASH表中保存这种半连接信息,直到收到正确的回应ACK报文再分配TCB。这个开销远小于TCB的开销。当然还需要保存序列号。
    • Syn Cookie技术
      Syn Cookie技术则完全不使用任何存储资源,这种方法比较巧妙,它使用一种特殊的算法生成Sequence Number,这种算法考虑到了对方的IP、端口、己方IP、端口的固定信息,以及对方无法知道而己方比较固定的一些信息,如MSS(Maximum Segment Size,最大报文段大小,指的是TCP报文的最大数据报长度,其中不包括TCP首部长度。)、时间等,在收到对方 的ACK报文后,重新计算一遍,看其是否与对方回应报文中的(Sequence Number-1)相同,从而决定是否分配TCB资源。
  3. 使用SYN Proxy防火墙
    一种方式是防止墙dqywb连接的有效性后,防火墙才会向内部服务器发起SYN请求。防火墙代服务器发出的SYN ACK包使用的序列号为c, 而真正的服务器回应的序列号为c’, 这样,在每个数据报文经过防火墙的时候进行序列号的修改。另一种方式是防火墙确定了连接的安全后,会发出一个safe reset命令,client会进行重新连接,这时出现的syn报文会直接放行。这样不需要修改序列号了。但是,client需要发起两次握手过程,因此建立连接的时间将会延长。

参考

  1. 三次握手,四次挥手你真的懂吗?
  2. TCP系列02—连接管理—1、三次握手与四次挥手