0%

java集合系列11之LinkedHashMap和LinkedHashSet源码解析

本文首先对LinkedHashMap整体进行分析,然后在介绍LinkedHashSet,其实它只是针对LinkedHashMap的简单封装。类图如下
uml图

LinkedHashMap实现了Map接口,即允许放入key为null的元素,也允许插入value为null的元素。从名字上可以看出该容器是linked list和HashMap的混合体,也就是说它同时满足HashMap和linked list的某些特性。可将LinkedHashMap看作采用linked list增强的HashMap。
存储结构如下

整体结构

事实上LinkedHashMap是HashMap的直接子类,二者唯一的区别是LinkedHashMap在HashMap的基础上,采用双向链表(doubly-linked list)的形式将所有entry连接起来,这样是为保证元素的迭代顺序跟插入顺序相同。上图给出了LinkedHashMap的结构图,主体部分跟HashMap完全一样,多了header指向双向链表的头部(是一个哑元),该双向链表的迭代顺序就是entry的插入顺序。

除了可以保迭代历顺序,这种结构还有一个好处 : 迭代LinkedHashMap时不需要像HashMap那样遍历整个table,而只需要直接遍历header指向的双向链表即可,也就是说LinkedHashMap的迭代时间就只跟entry的个数相关,而跟table的大小无关。

首先看下LinkedHashMap的重要参数和构造函数,源码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
* 指向链表的头部
*/
transient LinkedHashMap.Entry<K,V> head;

/**
* 指向链表的尾部
*/
transient LinkedHashMap.Entry<K,V> tail;

/**
* 链表的插入顺序,如果是false,则按照插入顺序,如果是true按照访问顺序。
* 注意这里时final,一旦定义不能修改
*/
final boolean accessOrder;

public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

除了加入以上三个属性,还扩展了节点的结构用来支持链表,主要是加入了获取其前节点以及节点的数据,具体代码如下

1
2
3
4
5
6
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}

插入

下面来看下创建过程,整体的创建过程和HashMap一直,只是在创建节点时会有增加了链接其它节点的功能,

首选是覆盖HashMap中的创建修改节点的,从而保证每次添加和修改节点时能够加入LinkedHashMap的链表功能。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

// 创建新节点
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
linkNodeLast(p);
return p;
}

// 取代新节点
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
LinkedHashMap.Entry<K,V> t =
new LinkedHashMap.Entry<K,V>(q.hash, q.key, q.value, next);
transferLinks(q, t);
return t;
}

TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
linkNodeLast(p);
return p;
}

TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
transferLinks(q, t);
return t;
}
private void transferLinks(LinkedHashMap.Entry<K,V> src,
LinkedHashMap.Entry<K,V> dst) {
LinkedHashMap.Entry<K,V> b = dst.before = src.before;
LinkedHashMap.Entry<K,V> a = dst.after = src.after;
if (b == null)
head = dst;
else
b.after = dst;
if (a == null)
tail = dst;
else
a.before = dst;
}

private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
tail = p;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
}

接下来的插入操作和HashMap是一致的,有区别的点是在插入的过程中,会根据前面设置的accessOrder来调整LinkedHashMap链表的顺序,原理是扩展了HashMap的俩个函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// 在插入完成后,判断是否需要移除某些节点,
// 根据源码可以得出,是不会执行到if中
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}

// 主要用于扩展,什么时机删除
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}

// 根据是否按照访问顺序进行排序
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}

从上面可以看出,LinkedHashMap和HashMap的插入基本一致,只是会在插入的每个节点中保持一条链表,链表的顺序可以根据插入或者访问顺序,在创建对象的时候就定义下来。

访问
访问源码如下,主要还是使用了HashMap中定义的函数,在访问完成后,会根据accessOrder来调整链表的顺序

1
2
3
4
5
6
7
8
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}

移除
在LinkedHashMap中没有定义remove方法,直接使用的是HashMap中的方法,区别是移除后,LinkeHashMap又多了一步,afterNodeRemoval,具体定义如下,其实就是删除节点之间的连接

1
2
3
4
5
6
7
8
9
10
11
12
13
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.before = p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a == null)
tail = b;
else
a.before = b;
}

LinkedHashSet

LinkedHashSet是对LinkedHashMap的简单包装,对LinkedHashSet的函数调用都会转换成合适的LinkedHashMap方法,因此LinkedHashSet的实现非常简单,这里不再赘述。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class LinkedHashSet<E>
extends HashSet<E>
implements Set<E>, Cloneable, java.io.Serializable {
// ......
// LinkedHashSet里面有一个LinkedHashMap
public LinkedHashSet(int initialCapacity, float loadFactor) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
// ......
public boolean add(E e) {//简单的方法转换
return map.put(e, PRESENT)==null;
}
// ......
}

LinkedHashMap经典用法

LinkedHashMap除了可以保证迭代顺序外,还有一个非常有用的用法: 可以轻松实现一个采用了FIFO替换策略的缓存。具体说来,LinkedHashMap有一个子类方法protected boolean removeEldestEntry(Map.Entry<K,V> eldest),该方法的作用是告诉Map是否要删除最老的Entry,所谓最老就是当前Map中最早插入的Entry,如果该方法返回true,最老的那个元素就会被删除。在每次插入新元素的之后LinkedHashMap会自动询问removeEldestEntry()是否要删除最老的元素。这样只需要在子类中重载该方法,当元素个数超过一定数量时让removeEldestEntry()返回true,就能够实现一个固定大小的FIFO策略的缓存。示例代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
/** 一个固定大小的FIFO替换策略的缓存 */
class FIFOCache<K, V> extends LinkedHashMap<K, V>{
private final int cacheSize;
public FIFOCache(int cacheSize){
this.cacheSize = cacheSize;
}

// 当Entry个数超过cacheSize时,删除最老的Entry
@Override
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return size() > cacheSize;
}
}